Solutions to short-answer questions

1 a
$$390^{\circ} = \frac{390 \times \pi}{180} = \frac{13\pi}{6}$$

b
$$840^{\circ} = \frac{840 \times \pi}{180} = \frac{14\pi}{3}$$

c
$$1110^{\circ} = \frac{1110 \times \pi}{180} = \frac{37\pi}{6}$$

$$\mathsf{d} \quad 1035^{\circ} = \frac{1065 \times \pi}{180} = \frac{71\pi}{12}$$

$$\mathbf{e} \quad 165^{\circ} = \frac{165 \times \pi}{180} = \frac{11\pi}{12}$$

$$f \quad 450^{\circ} = \frac{450 \times \pi}{180} = \frac{5\pi}{2}$$

$$\mathsf{g} \quad 420^\circ = \frac{420 \times \pi}{180} = \frac{7\pi}{3}$$

$$\mathsf{h} \quad 390^{\circ} = \frac{390 \times \pi}{180} = \frac{13\pi}{6}$$

i
$$40^{\circ} = \frac{40 \times \pi}{180} = \frac{2\pi}{9}$$

2 a
$$\frac{11\pi}{6} = \frac{11\pi \times 180}{6\pi} = 330^{\circ}$$

$${\bf b} \quad \frac{17\pi}{4} = \frac{17\pi \times 180}{4\pi} = 765^{\circ}$$

$$\mathbf{c} = \frac{9\pi}{4} = \frac{9\pi \times 180}{4\pi} = 405^{\circ}$$

$$\mathsf{d} \quad \frac{7\pi}{12} = \frac{7\pi \times 180}{12\pi} = 105^{\circ}$$

$${f e} = rac{17\pi}{2} = rac{17\pi imes 180}{2\pi} = 1530^{\circ}$$

$$\mathbf{f} - rac{11\pi}{4} = rac{-11\pi imes 180}{4\pi} = -495^{\circ}$$

$${f g} - rac{5\pi}{4} = rac{-5\pi imes 180}{4\pi} = -225^{\circ}$$

$$\mathbf{h} \quad -\frac{13\pi}{4} = \frac{-13\pi \times 180}{4\pi} = -585^{\circ}$$

$${\sf i} = rac{23\pi}{4} = rac{23\pi imes 180}{4\pi} = 1035^\circ$$

3 a
$$\sin \frac{9\pi}{4} = \sin \left(2\pi + \frac{4\pi}{4}\right)$$
 $= \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$

$$\mathbf{b} \quad \cos\left(-\frac{5\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right)$$
$$= -\cos\frac{\pi}{4}$$
$$= -\frac{1}{\sqrt{2}}$$

$$c \quad \sin \frac{3\pi}{2} = -1$$

$$\mathsf{d} \quad \cos{-\frac{3\pi}{2}} = 0$$

e
$$\cos \frac{11\pi}{6} = \cos \left(2\pi - \frac{\pi}{6}\right)$$

$$= \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

$$\mathbf{f} \quad \sin \frac{21\pi}{6} = \sin \left(4\pi - \frac{\pi}{6}\right)$$
$$= \sin -\frac{\pi}{2} = -1$$

$$\mathbf{g} \quad \tan{-\frac{25\pi}{3}} = -\tan{\left(8\pi + \frac{\pi}{3}\right)}$$
$$= -\tan{\frac{\pi}{3}} = -\sqrt{3}$$

$$\mathbf{h} \quad \tan{-\frac{15\pi}{4}} = -\tan{\left(4\pi - \frac{\pi}{4}\right)}$$
$$= -\tan{-\frac{\pi}{4}} = 1$$

a Period
$$=\frac{2\pi}{\frac{1}{2}}=4\pi$$

$$Amplitude = 4$$

$$\mathbf{b} \quad \text{Period} = \frac{2\pi}{6} = \frac{\pi}{3}$$

$$Amplitude = 5$$

$$\mathbf{c} \quad \text{Period} = \frac{2\pi}{4} = \frac{\pi}{2}$$

$$\text{Amplitude} = \frac{1}{3}$$

d Period =
$$\frac{2\pi}{5}$$

$$Amplitude = 2 \\$$

e Period =
$$\frac{2\pi}{\frac{\pi}{4}}$$
 = 8

$$Amplitude = 7$$

$$\mathsf{f} \quad \text{Period} = \frac{2\pi}{\frac{2\pi}{3}} = 3$$

$$Amplitude = \frac{2}{3}$$

- **5 a** Maximum when $\sin \theta = 1, 5$ Minimum when $\sin \theta = -1, 1$.
 - **b** Maximum when $\cos \theta = -1$, 9 Minimum when $\cos \theta = 1$, -1.
- **6 a** The graph of $y=2\cos 2x$ has period $\dfrac{2\pi}{2}=\pi$ and amplitude 2.

b The graph of $y=-3\sin\frac{x}{3}$ has period $\frac{2\pi}{\frac{1}{2}}=6\pi$ and amplitude 3. It is $y=3\sin\frac{x}{3}$ reflected in the x-axis.

c The graph of $y=-2\cos 3x$ (period $\frac{2\pi}{3}$, amplitude 2), reflected in the x-axis.

d The graph of $y=2\cos\frac{x}{3}$ has period $\frac{2\,\pi}{\frac{1}{2}}=6\pi$ and amplitude 3.

 $\mathbf{e} \quad \text{ The graph of } y = \cos x \text{, translated } \frac{\pi}{4} \text{ units to the right.}$

f The graph of $y=\cos x$, translated $\frac{2\pi}{3}$ units to the left.

g The graph of $y=2\sin x$, translated $\frac{5\pi}{6}$ units to the right.

h The graph of $y=3\sin x$, reflected in the x-axis and translated $\frac{\pi}{6}$ units to the left.

7 a
$$\cos heta = -rac{\sqrt{3}}{2}$$
 $heta = rac{5\pi}{6} ext{ and } -rac{5\pi}{6}$

$$egin{align} \mathbf{b} & 2 heta \in [-2\pi,2\pi] \ & \cos 2 heta = rac{\sqrt{3}}{2} \ & 2 heta = -rac{7\pi}{6}, -rac{5\pi}{6}, rac{5\pi}{6}, rac{7\pi}{6} \ & heta = -rac{7\pi}{12}, -rac{5\pi}{12}, rac{5\pi}{12} ext{ and } rac{7\pi}{12} \ \end{aligned}$$

$$\mathbf{c} \quad \theta - \frac{\pi}{3} \in \left[-\frac{\pi}{3}, \frac{5\pi}{3} \right]$$

$$\cos \left(\theta - \frac{\pi}{3} \right) = \frac{1}{2}$$

$$\theta = \pi \text{ and } \frac{5\pi}{3}$$

$$\mathsf{d} \quad \theta + \frac{\pi}{3} \in \left[\frac{\pi}{3}, \frac{7\pi}{3}\right]$$

$$\cos\left(\theta + \frac{\pi}{3}\right) = -1$$

$$\theta = \frac{2\pi}{3}$$

$$rac{\pi}{3} - heta \in \left[-rac{5\pi}{3}, rac{\pi}{3}
ight]$$
 $\cos \left(rac{\pi}{3} - heta
ight) = rac{1}{2}$ $heta = \pi ext{ and } rac{5\pi}{3}$

The graph of $y=2\cos 2x$ (period π , amplitude 2) translated 1 unit up.

b The graph of $y=2\cos 2x$ reflected in the x-axis and translated 1 unit up.

c The graph of $y=3\sin x$ translated $\frac{\pi}{3}$ units to the left.

d The graph of $y=\sin x$ reflected in the x-axis and translated $\frac{\pi}{3}$ units to the left and 2 units up.

e The graph of $y=2\cos 3x$ $\left(\text{ period } \frac{2\pi}{3}, \text{ amplitude } 2 \right)$ reflected in the x-axis and translated 1 unit up.

9 a

$$\tan x = -\sqrt{3}$$

$$\therefore x = \pi - \frac{\pi}{3}, 2\pi - \frac{\pi}{3}$$

$$\therefore x = rac{2\pi}{3}, rac{5\pi}{3}$$
 as $x \in [0, 2\pi]$

 $\mathbf{b} \quad \tan\!\left(3x - \frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$

as
$$x \in [0,2\pi]$$

$$\therefore 3x \in [0,6\pi]$$

$$\therefore 3x - \frac{\pi}{6} \in \left[-\frac{\pi}{6}, \ \frac{35\pi}{6} \right]$$

$$\therefore 3x - \frac{\pi}{6} = \frac{\pi}{6}, \frac{7\pi}{6}, \ \frac{\pi}{6} + 2\pi, \frac{7\pi}{6} + 2\pi, \frac{\pi}{6} + 4\pi, \frac{7\pi}{6} + 4\pi$$

$$\therefore 3x - \frac{\pi}{6} = \frac{\pi}{6}, \frac{7\pi}{6}, \ \frac{13\pi}{6}, \ \frac{19\pi}{6}, \ \frac{25\pi}{6}, \ \frac{31\pi}{6}$$

$$\therefore 3x = \frac{\pi}{3}, \frac{4\pi}{3}, \; \frac{7\pi}{3}, \; \frac{10\pi}{3}, \; \frac{13\pi}{3}, \; \frac{16\pi}{3}$$

$$\therefore x = \frac{\pi}{9}, \; \frac{4\pi}{9}, \; \frac{7\pi}{9}, \; \frac{10\pi}{9}, \; \frac{13\pi}{9}, \; \frac{16\pi}{9}$$

CAS: Type

$$\mathbf{solve}igg(\mathbf{tan}igg(3oldsymbol{x}-rac{oldsymbol{\pi}}{6}igg)=rac{\sqrt{3}}{3},\;oldsymbol{x}igg)igg|0\leqoldsymbol{x}\leq2oldsymbol{\pi}$$

Use the right arrow key to view all solutions.

C

$$2 an\!\left(rac{x}{2}
ight)+2=0$$

$$\therefore \tan\!\left(\frac{x}{2}\right) = -1$$

and
$$rac{x}{2} \in [0, \ \pi]$$

$$\therefore rac{x}{2} = rac{3\pi}{4}$$
 as $rac{x}{2} \in [0,\ \pi]$

$$\therefore x = \frac{3\pi}{2}$$

$$\mathsf{d} \quad 3\tan\!\left(\frac{\pi}{2}+2x\right) = -3$$

$$\therefore\tan\!\left(\frac{\pi}{2}+2x\right)=-1$$

as
$$x \in [0,2\pi]$$

$$\therefore rac{\pi}{2} + 2x \in \left[rac{\pi}{2}, \; rac{9\pi}{2}
ight]$$

$$\therefore \frac{\pi}{2} + 2x = \frac{3\pi}{4}, \frac{7\pi}{4}, \ \frac{3\pi}{4} + 2\pi, \frac{7\pi}{4} + 2\pi$$

$$\therefore \frac{\pi}{2} + 2x = \frac{3\pi}{4}, \frac{7\pi}{4}, \frac{11\pi}{4}, \frac{15\pi}{4}$$

$$\therefore 2x = \frac{\pi}{4}, \ \frac{5\pi}{4}, \ \frac{9\pi}{4}, \ \frac{13\pi}{4}$$

$$\therefore x = \frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8}$$

10a
$$f(x) = \tan(2x)$$

Period:
$$=\frac{\pi}{|n|} = \frac{\pi}{2}$$

Asymptotes:

$$x=\frac{(2k+1)\pi}{2n}$$

$$\therefore x = \frac{(2k+1)\pi}{4}$$

$$\therefore x = \frac{\pi}{4}, \; \frac{3\pi}{4} \; \mathsf{as} \; x \in [0, \; \pi]$$

x-intercepts:

as
$$x \in [0, \ \pi]$$

$$\therefore 2x \in [0,2\pi]$$

$$\tan(2x)=0$$

$$\therefore 2x = 0, \ \pi, \ 2\pi$$

$$\therefore x=0,\;rac{\pi}{2},\;\pi$$

 \emph{y} -intercept:

$$f(0)=\tan(0)=0$$

b

$$f(x) = an\!\left(x - rac{\pi}{3}
ight)$$

$$\text{Period:} = \frac{\pi}{|n|} = \pi$$

Asymptotes:

$$x=\frac{(2k+1)\pi}{2n}+\frac{\pi}{3}$$

$$\therefore x = \frac{(2k+1)\pi}{2} + \frac{\pi}{3}$$

$$\therefore x = rac{\pi}{2} + rac{\pi}{3}$$
 as $x \in [0, \ \pi]$

$$\therefore x = \frac{5\pi}{6}$$

x-intercepts:

as
$$x \in [0,~\pi]$$

$$\therefore x \, -\frac{\pi}{3} \in \left[\, -\frac{\pi}{3}, \, \frac{2\pi}{3} \right]$$

$$an\!\left(x-rac{\pi}{3}
ight)=0$$

$$\therefore x - \frac{\pi}{3} = 0$$

$$\therefore x = \frac{\pi}{3}$$

y-intercept:

$$f(0)= an\!\left(-rac{\pi}{3}
ight)=- an\!\left(rac{\pi}{3}
ight)=-sqrt3$$

Endpoint:

$$f(\pi) = an\!\left(rac{2\pi}{3}
ight) = -\sqrt{3}$$

$$f(x)=2 an\!\left(2x+rac{\pi}{3}
ight)=2 an\!\left(2\!\left(x+rac{\pi}{6}
ight)
ight)$$

$$\text{Period:} = \frac{\pi}{|n|} = \frac{\pi}{2}$$

Asymptotes:

$$x=\frac{(2k+1)\pi}{2n}-\frac{\pi}{6}$$

$$\therefore x = \frac{(2k+1)\pi}{4} - \frac{\pi}{6}$$

$$\therefore x=rac{\pi}{4}-rac{\pi}{6},rac{3\pi}{4}-rac{\pi}{6} ext{ as } x\in [0,\ \pi]$$

$$\therefore x = rac{\pi}{12}, rac{7\pi}{12}$$

x-intercepts:

as
$$x \in [0,~\pi]$$

$$\therefore 2x + rac{\pi}{3} \in \left[rac{\pi}{3}, rac{7\pi}{3}
ight]$$

$$\therefore \tan \left(2x + \frac{\pi}{3}\right) = 0$$

$$\therefore 2x + \frac{\pi}{3} = \pi, \ 2\pi$$

$$\therefore x = \frac{\pi}{3}, \ \frac{5\pi}{6}$$

y-intercept:

$$f(0)=2 anigg(rac{\pi}{3}igg)=2\sqrt{3}$$

Endpoint:

$$f(\pi) = 2 an\!\left(rac{7\pi}{3}
ight) = 2\sqrt{3}$$

d

$$egin{split} f(x) &= 2 anigg(2x+rac{\pi}{3}igg)-2 \ &= 2 anigg(2igg(x+rac{\pi}{6}igg)igg)-2 \end{split}$$

$$\text{Period:} = \frac{\pi}{|n|} = \frac{\pi}{2}$$

Asymptotes:

$$x=\frac{(2k+1)\pi}{2n}-\frac{\pi}{6}$$

$$\therefore x = \frac{(2k+1)\pi}{4} - \frac{\pi}{6}$$

$$\therefore x = \frac{\pi}{4} \, - \frac{\pi}{6}, \frac{3\pi}{4} \, - \frac{\pi}{6} \text{ as } x \in [0, \, \pi]$$

$$\therefore x = \frac{\pi}{12}, \frac{7\pi}{12}$$

x-intercepts:

as
$$x \in [0,~\pi]$$

$$\therefore 2x + \frac{\pi}{3} \in \left[\frac{\pi}{3}, \frac{7\pi}{3}\right]$$

$$\therefore \tan \left(2x + \frac{\pi}{3}\right) = 1$$

$$\therefore 2x + \frac{\pi}{3} = \frac{5\pi}{4}, \ \frac{9\pi}{4}$$

$$\therefore x = \frac{11\pi}{24}, \ \frac{23\pi}{24}$$

y-intercept:

$$f(0)=2 anigg(rac{\pi}{3}igg)-2=2\sqrt{3}-2$$

Endpoint:

$$f(\pi)=2 an\!\left(rac{7\pi}{3}
ight)-2=2\sqrt{3}-2$$

$$f(x) = 2\tan\left(2x + \frac{\pi}{3}\right) - 2$$

$$2\sqrt{3} - 2$$

$$\frac{\pi}{12}$$

$$\frac{11\pi}{24}$$

$$\frac{7\pi}{12}$$

$$(\pi, 2\sqrt{3} - 2)$$

$$\frac{23\pi}{24}$$

11a
$$\sin^2\theta=rac{1}{4}$$

$$\sin\theta=\pmrac{1}{2}$$

$$\theta=rac{\pi}{6},rac{5\pi}{6},rac{7\pi}{6},rac{11\pi}{6}$$

$$\begin{array}{ll} \mathbf{b} & \sin 2\theta = \frac{1}{2} \\ & 2\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6} \\ & \theta = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12} \end{array}$$

$$\mathbf{c} \quad \cos 3\theta = \frac{\sqrt{3}}{2}$$

$$3\theta = \frac{\pi}{6}, \frac{11\pi}{6}, \frac{13\pi}{6}, \frac{23\pi}{6}, \frac{25\pi}{6}, \frac{35\pi}{6}$$

$$\theta = \frac{\pi}{18}, \frac{11\pi}{18}, \frac{13\pi}{18}, \frac{23\pi}{18}, \frac{25\pi}{18}, \frac{35\pi}{18}$$

$$\begin{aligned} \mathbf{d} & \sin^2 2\theta = 1 \\ & \sin 2\theta = \pm 1 \\ 2\theta &= \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2} \\ \theta &= \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \end{aligned}$$

$$an heta = 2 \sin heta \ rac{\sin heta}{\cos heta} = 2 \sin heta \ rac{\sin heta}{\cos heta} = 2 \sin heta \ rac{\sin heta}{\cos heta} - 2 \sin heta = 0 \ \sin heta \left(rac{1}{\cos heta} - 2
ight) = 0 \ \sin heta = 0 ext{ or } \cos heta = rac{1}{2} \ heta = 60^\circ, 300^\circ, 0^\circ, 180^\circ, 360^\circ \ \end{cases}$$

13a
$$n\pi+rac{\pi}{4}$$
 , $n\in\mathbb{Z}$

$$\mathsf{b} \quad rac{2n\pi}{3}$$
 , $n \in \mathbb{Z}$

$$\mathsf{c} \quad -rac{\pi}{4} + n\pi, n \in \mathbb{Z}$$

Solutions to multiple-choice questions

1 A
$$y=2\sin{(3x-\pi)}+4$$
 $=2\sin{3\left(x-rac{\pi}{3}
ight)}+4$ Period $=rac{2\pi}{3}$

$$\mathbf{D} \qquad y = -5\cos 5x + 3$$

2

3

$$Amplitude = |-5| = 5$$

$$egin{aligned} extstyle extstyle$$

Maximum and minimum y values are y = 7 and y = -3.

Since y=0 is within the range of the function, the function will pass through the line twice each cycle. The function covers two cycles over the given domain, and so will pass through y=0 four times.

There are four solutions.

$$\begin{array}{l}
\mathbf{C} & \frac{3\pi}{11} = \frac{3 \times \pi \times 180}{\pi \times 11} \\
&= \frac{540}{11} \\
&= 49.09
\end{array}$$

$$x \in \left(rac{5\pi}{12}, rac{23\pi}{12}
ight) \ 3x \in \left(rac{5\pi}{4}, rac{23\pi}{4}
ight)$$

$$egin{align} \sin 3x &= -rac{\sqrt{2}}{2} = -rac{1}{\sqrt{2}} \ 3x &= \pi + rac{\pi}{4}, 2\pi - rac{\pi}{4}, 3\pi + rac{\pi}{4}, \ 4\pi - rac{\pi}{4}, 5\pi + rac{\pi}{4}, 6\pi - rac{\pi}{4} \ \end{cases}$$

Omit the first and last as they are not in the interval.

$$3x=rac{7\pi}{4},rac{13\pi}{4},rac{15\pi}{4},rac{21\pi}{4} \ x=rac{7\pi}{12},rac{13\pi}{12},rac{5\pi}{4},rac{7\pi}{4}$$

6 E
$$\cos\left(-\frac{13\pi}{6}\right) = \cos\left(-2\pi - \frac{\pi}{6}\right)$$

$$= \cos -\frac{\pi}{6}$$

$$= \sin\frac{2\pi}{2}$$

$$\begin{aligned} \mathbf{E} & \tan (180 - \theta)^{\circ} = \frac{\sin (180 - \theta)^{\circ}}{\cos (180 - \theta)^{\circ}} \\ &= \frac{\sin \theta^{\circ}}{-\cos \theta^{\circ}} \\ &= \frac{-\cos (90 + \theta)^{\circ}}{-\sin (90 + \theta)^{\circ}} \\ &= \frac{\cos (90 + \theta)^{\circ}}{-\cos (90 + \theta)^{\circ}} \end{aligned}$$

8 C All other responses are
$$\cos x$$

10 B Period of
$$4\sin(3\pi x)$$
 is $\frac{2}{3}$

Period of
$$3\sin(2\pi x)$$
 is 1

Period of the graph
$$2$$
 since $3 imes \frac{2}{3} = 2$

Solutions to extended-response questions

1 a Maximum depth =
$$15.4$$
 m at midnight and noon.

$$Minimum\ depth = 11.4\ m$$
 at 6:00 and 18:00.

Time is measured in hours with
$$t=0$$
 corresponding to midnight on a particular day.

$$D(t) = a + b \cos \left(rac{2\pi t}{k}
ight)$$

The 'centre' of the graph is given by
$$\frac{15.4+11.4}{2}=13.4$$

Therefore
$$a = 13.4$$
.

ii The amplitude =
$$13.4 - 11.4$$

Therefore
$$b = 2$$
.

iii
$$Period = 12 hours$$
 (the time between high tides).

Therefore 2
$$\pi \div \frac{2\pi}{k} = 12$$

and hence
$$k = 12$$

When the depth of the water is 13.4 m

$$13.4=13.4+2\cos\left(rac{\pi t}{6}
ight)$$

This implies
$$\cos\left(\frac{\pi t}{6}\right) = 0$$

$$\therefore \frac{\pi t}{6} = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \text{ or } \frac{5\pi}{2} \text{ or } \frac{7\pi}{2}$$

Hence
$$t = 3$$
 or 9 or 15 or 21 .

The depth of the water is 13.4 m at 3:00 am, 9:00 am, 3:00 pm and 9:00 pm.

Consider the inequality

$$13.4+2\cos\left(rac{\pi t}{6}
ight)<14.4$$

which is equivalent to

$$\cos\left(rac{\pi t}{6}
ight)<rac{1}{2}$$

First consider the equation

$$\cos\left(\frac{\pi t}{6}\right) = \frac{1}{2}$$

$$\therefore \frac{\pi t}{6} = \frac{\pi}{3} \text{ or } \frac{5\pi}{3} \text{ or } \frac{7\pi}{3} \text{ or } \frac{11\pi}{3}$$
and $t = 2 \text{ or } 10 \text{ or } 14 \text{ or } 22$

From the graph of $y = \cos \left(\frac{\pi t}{6} \right)$ this is true for 2 < t < 10 or 14 < t < 22.

2
$$T=15-8\cos\left(rac{\pi t}{12}+6
ight)$$
 for $0\leq t\leq 24$

- When $t = 0, T = 15 8\cos(6)$ = 7.3° , correct to two significant figures.
- b The maximum temperature = 15 (-8)= 23° The minimum temperature = 15 - 8= 7°
- c Temperatures are warmer than 20° when

$$15-8\cos\,\left(\frac{\pi t}{12}+6\right)>20$$

Rearranging the inequality gives

$$\cos\left(rac{\pi t}{12}+6
ight)<-rac{5}{8}$$

Consider the equation

$$\cos\!\left(\frac{\pi t}{12} + 6\right) = -\frac{5}{8}$$

This gives
$$\frac{\pi t}{12} + 6 = \pi - \cos^{-1}\left(\frac{5}{8}\right) \text{ or } \pi + \cos^{-1}\left(\frac{5}{8}\right) \text{ or } 3\pi - \cos^{-1}\left(\frac{5}{8}\right) \text{ or } 3\pi + \cos^{-1}\left(\frac{5}{8}\right)$$

$$t = 9.6605\dots$$
 or $16.5028\dots$

From the graph, temperatures are warmer than 20° between 9:40 am and 4:30 pm.

d

$$3 \quad x(t) = 3\sin (2\pi t - a)$$

When
$$t=1, x(t)=-1.5$$

To find a consider the equation

$$-1.5 = 3 \sin (2\pi - a)$$

$$-1.5 = 3 \sin (2\pi - a)$$

$$-\frac{1}{2} = \sin (2\pi - a)$$

$$-\frac{1}{2} = -\sin a$$
Therefore $a = \frac{\pi}{6}$

$$-rac{1}{2}=-\sin a$$

Therefore
$$a=rac{\pi}{6}$$

and
$$x(t)=3\sin\left(2\pi t-rac{\pi}{6}
ight)$$

b

O is 3 metres from point A, as the amplitude of the graph is 3.

d When
$$x(t) = -3$$
,

$$3\sin\left(2\pi t-rac{\pi}{6}
ight)=-3$$

$$\therefore \sin\left(2\pi t - \frac{\pi}{6}\right) = -1$$

$$\therefore 2\pi t - \frac{\pi}{6} = \frac{3\pi}{2}$$
$$\therefore 2\pi t = \frac{3\pi}{2} + \frac{\pi}{6}$$

$$\therefore \quad t = \frac{5}{6}$$

The particle first passes through A when $t=rac{5}{6}$.

e The period of the motion is
$$\frac{2\pi}{2\pi} = 1$$
.

Therefore it takes 1 second to return to A.

f It will take
$$\frac{1}{4}$$
 of a period to go from A to O , i.e. $\frac{1}{4}$ second.

$$\textbf{4} \quad h(t) = p + q \sin \left(\frac{\pi t}{6}\right)$$

The 'centre' is at
$$\dfrac{10.2+1.8}{2}=6.$$

Therefore
$$p=6$$
.

The amplitude is
$$10.2 - 6 = 4.2$$
.

Therefore
$$q=4.2$$
.

b The period of the function is
$$2\pi \div \frac{\pi}{6} = 12$$

Maximum value of
$$6+4.2\sin\left(rac{\pi t}{6}
ight)$$
 occurs when

$$\sin\left(\frac{\pi t}{6}\right) = 1$$

$$\therefore \frac{\pi t}{6} = \frac{\pi}{2} \text{ or } \frac{5\pi}{2}$$

$$\therefore t = 3 \text{ or } 15$$

So the depth is a maximum at
$$3~\mathrm{am}$$
 and $3~\mathrm{pm}$.

$${f c}$$
 The average depth is ${f 6}$ metres for the ${f 24}$ hour period.

$$\mathsf{d} \qquad \text{When } h(t) = 3.9, 3.9 = 6 + 4.2 \sin \left(\frac{\pi t}{6}\right)$$

Solve for
$$t \sin \left(\frac{\pi t}{6}\right) = -\frac{1}{2}$$

$$\therefore \frac{\pi t}{6} = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6} \text{ or } \frac{19\pi}{6} \text{ or } \frac{23\pi}{6}$$

$$\therefore t = 7 \text{ or } 11 \text{ or } 19 \text{ or } 23$$

So the depth of the water is 3.9 metres at 7 am, 11 am, 7 pm and 11 pm.

e Consider the inequation

$$6+4.2\sin\left(rac{\pi t}{6}
ight)>8.1$$
 $\therefore \sin\left(rac{\pi t}{6}
ight)>rac{1}{2}$

Consider the equation

$$\sin\left(\frac{\pi t}{6}\right) = \frac{1}{2}$$

$$\therefore \frac{\pi t}{6} = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \text{ or } \frac{13\pi}{6} \text{ or } \frac{17\pi}{6}$$

$$\therefore t = 1 \text{ or 5 or 13 or 17}$$

Therefore, from the graph, $\sin\left(\frac{\pi t}{6}\right) > \frac{1}{2}$ for the intervals [1, 5] and [13, 17]. The duration of time for which the depth is greater than 8.1 m is 8 hours.

^a i The line with equation y=1 meets the graph 7 times. Therefore there are 6 intersections for 1 < k < 3 or -l < k < 1.

ii The lines which pass through the maxima or minima give the threesolutions. Therefore k=3 or k=-1.

iii There are no solutions for k > 3 or k < -1.

b The sequence of transformations which takes the graph of $y = 2\sin(3x) + 1$ to the graph of $y = \sin x$ can be found by rearranging the first of the equations.

$$\text{becomes } \frac{\text{i.e. } y = 2 \sin \ (3x) + 1}{2} = \sin \ (3x)$$

and considering the equation of the image $y'=\sin x'$,

$$y'=rac{y-1}{2} \ =rac{y}{2}-rac{1}{2} \ ext{and} \ x'=3x$$

Therefore the sequence of transformations is a dilation of factor $\frac{1}{2}$ from the x axis and a dilation of factor x from the x axis followed by a translation of x a unit in the negative direction of the x axis.

An alternative sequence is: a translation of 1 unit down, then a dilation of factor $\frac{1}{2}$ from the x-axis and a dilation of factor 3 from the y-axis.

c i For the graph of $y=f\left(x+h\right)$ to have a maximum at $\left(\frac{\pi}{3},3\right)$ consider

$$2\sin\left(3\left(\frac{\pi}{3}+h\right)\right)+1=3$$

$$\therefore \sin\left(3h+\pi\right)=1$$
which implies $\sin\left(3h\right)=-1$
and $3h=\frac{3\pi}{2}$ or $\frac{7\pi}{2}$

$$\therefore h=\frac{\pi}{2} \text{ or } \frac{7\pi}{6}$$

ii For the graph of y=f(x+h) to have a minimum at $\left(\frac{\pi}{3},-1\right)$ consider

$$2\sin\left(3\left(\frac{\pi}{3}+h\right)\right)+1=-1$$

$$\therefore \sin\left(3h+\pi\right)=-1$$
which implies $\sin\left(3h\right)=1$
and $3h=\frac{\pi}{2}$ or $\frac{5\pi}{2}$

$$\therefore h=\frac{\pi}{6} \text{ or } \frac{5\pi}{6}$$

6 a Consider $y = \sin x$

$$=\cos\left(rac{\pi}{2}-x
ight)$$
 $=\cos\left(x-rac{\pi}{2}
ight)$

Therefore the graph of $y = \cos x$ can be taken to the graph of $y = \sin x$ by a translation of $\frac{\pi}{2}$ units in the positive direction of the x axis.

 $\mathbf{b} \quad \text{Consider} y = -\frac{1}{2} \sin 2x$ $= \frac{1}{2} \cos \left(2x + \frac{\pi}{2}\right)$ $= \frac{1}{2} \cos 2 \left(x + \frac{\pi}{4}\right)$

To find the sequence of transformations that take the graph of $y=2\cos x$ to the graph of $y=-rac{1}{2}\sin 2x$ compare

$$rac{y}{2}=\cos(x)$$
 and $2y'=\cos2\left(x'+rac{\pi}{4}
ight)$

Therefore
$$2y' = \frac{y}{2}$$

 $\therefore y' = \frac{y}{4}$

$$x = 2\left(x' + \frac{\pi}{4}\right)$$

$$\therefore \frac{x}{2} = x' + \frac{\pi}{4}$$

$$\therefore \quad x' = \frac{x}{2} - \frac{\pi}{4}$$

The sequence of transformations is a dilation of factor $\frac{1}{2}$ from the y axis, then a translation of $\frac{\pi}{4}$ units in the negative direction of the x axis and a dilation of factor $\frac{1}{4}$ from the x axis.

c i
$$(x,y)
ightarrow \left(rac{2}{\pi}x,4-y
ight)$$
 $x' = rac{2}{\pi}x$ $\therefore \quad x = rac{\pi x'}{2}$

and
$$y' = 4 - y$$

$$\therefore y = 4 - y'$$

The graph of $y=\sin x$ is mapped to the graph of $4-y'=\sin\left(\frac{\pi x'}{2}\right)$ and hence the image of $y=\sin x$ has equation $y=4-\sin\left(\frac{\pi x}{2}\right)$.

ii The range is [3, 5] and the period is 4.

7
$$N(t) = 3000 \sin \left(\frac{\pi(t-1)}{6} \right) + 4000$$

where \boldsymbol{t} is the number of months after January 1.

$$M(t) = 3000 \sin \left(\frac{\pi(t - 3.5)}{5} \right) + 5500$$

where t is the number of months after January 1.

a Maximum population of N = 7000 (occurs in April).

Maximum population of M=8500 (occurs in October).

Minimum population of N=1000 (occurs in June)

Minimum population of M=2500 (occurs at the end of January and November)

b Sketch the graphs of

$$f1=3000\sin\left(rac{\pi\left(t-1
ight)}{6}
ight)+4000$$
 and

 $f2 = 3000 \sin \left(rac{\pi (t-3.5)}{5}
ight) + 5500$

T1: Press Menu \rightarrow 6:Analyze

 $\textbf{Graph} \rightarrow \textbf{4:} \textbf{Intersection}$

CP: Tap **Analysis** \rightarrow **G**-

Solve \rightarrow Intersect

The graphs cross when t = 4.31, i.e. populations are the same in April.

The population is then 6961. Also when t=0.24, the populations are both 2836, i.e. the populations are the same in January.

c T1: Type
$$f1(x) + f2(x)$$
 into $f3(x) =$

Press Menu → **6:Analyze**

Graph → 3:Maximum

CP: Type $\boldsymbol{y1}(\boldsymbol{x}) + \boldsymbol{y2}(\boldsymbol{x})$ into $\boldsymbol{y3} =$

Tap Analysis \rightarrow G-Solve \rightarrow Max

The graph is as shown.

The maximum value of y = N(t) + M(t) is $14\,556.039$ and this occurs when t = 5.191, i.e. in May

d T1: Type
$$f1(x) - f2(x)$$
 into $f3(x) =$

Press Menu \rightarrow **6**: **Analyze**

Graph → 2: Minimum

CP: Type y1(x) - y2(x) into y3 =

Tap Analysis \rightarrow G-Solve \rightarrow Min

The maximum difference is given by the local minimum.

The difference is 4039.845 and this occurs when t=7.49, i.e. in July

8 a $h = 15\sin(10t - 45)^{\circ} + 16.5$

T1: Change the Graphing Angle to Degree before sketching. Press

 $Menu \rightarrow 9 : Settings$

CP: Set to Deg mode before sketching.

b When
$$t=0, h=15\sin{(-45)^0}+16.5$$

$$=-15\times\frac{1}{\sqrt{2}}+16.5$$

$$=5.89$$

$$5 = 15 \sin (10t - 45)^{\circ} + 16.5$$

$$-11.5 = 15 \sin (10t - 45)^{\circ}$$

$$\frac{-11.5}{15} = \sin (10t - 45)^{\circ}$$

$$10t - 45 = 180 + \sin^{-1} \left(\frac{23}{30}\right) \text{ or } 360 - \sin^{-1} \left(\frac{23}{30}\right)$$
or
$$540 + \sin^{-1} \left(\frac{23}{30}\right) \text{ or } 720 - \sin^{-1} \left(\frac{23}{30}\right)$$

$$10t = 225 + \sin^{-1} \left(\frac{23}{30}\right) \text{ or } 405 - \sin^{-1} \left(\frac{23}{30}\right)$$
or
$$585 + \sin^{-1} \left(\frac{23}{30}\right) \text{ or } 765 - \sin^{-1} \left(\frac{23}{30}\right)$$

$$t = \frac{1}{10} \left(225 + \sin^{-1} \left(\frac{23}{30}\right)\right) \text{ or } \frac{1}{10} \left(405 - \sin^{-1} \left(\frac{23}{30}\right)\right)$$

C

Isobel's seat passes the platform for the first time after

$$rac{1}{10} \left(225 + \sin^{-1} \, \left(rac{23}{30}
ight)
ight) {
m seconds} \, pprox 27.51 {
m seconds}.$$

This can, of course, be found using Intersection/Intersect from a CAS calculator.

or $\frac{1}{10} \left(585 + \sin^{-1} \left(\frac{23}{30} \right) \right)$ or $\frac{1}{10} \left(765 - \sin^{-1} \left(\frac{23}{30} \right) \right)$

- **d** Her seat will pass the platform six times in the first two minutes.
- **e** The ride is six minutes long. The seat will pass the access platform 20 times in the entire ride.
- **f** When t = 100, h = 4.213 Isobel is stranded 4.21 metres above the ground, correct to two decimal places.
- **g** The position of Hamish's seat above the ground is given by

$$h_2 = 15 \sin (10t - lpha)^\circ + 16.5$$
When $t = 0, h_2 = 1.5$
 $-1 = \sin(-lpha)^\circ$
 $lpha = 90$
 $\therefore h_2 = 15 \sin (10t - 90)^\circ + 16.5$
When $t = 100, h_2 = 15 \sin (1000 - 90)^\circ + 16.5 = 13.89$

Hamish's seat was 13.9 metres above the ground, correct to one decimal place.